Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras
نویسندگان
چکیده
منابع مشابه
Representations of Khovanov-lauda-rouquier Algebras Iii: Symmetric Affine Type
We develop the homological theory of KLR algebras of symmetric affine type. For each PBW basis, a family of standard modules is constructed which categorifies the PBW basis.
متن کاملFinite Dimensional Representations of Khovanov-lauda-rouquier Algebras I: Finite Type
We classify simple representations of Khovanov-Lauda-Rouquier algebras in finite type. The classification is in terms of a standard family of representations that is shown to yield the dual PBW basis in the Grothendieck group. Finally, we describe the global dimension of these algebras.
متن کاملGraded Cellular Bases for the Cyclotomic Khovanov-lauda-rouquier Algebras of Type A
This paper constructs an explicit homogeneous cellular basis for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A over a field.
متن کاملsl3-Foams and the Khovanov-Lauda categorification of quantum slk.
sl 3-Foams and the Khovanov-Lauda categorification of quantum sl k. Abstract In this paper I define certain interesting 2-functors from the Khovanov-Lauda 2-category which categorifies quantum sl k , for any k > 1, to a 2-category of universal sl 3 foams with corners. For want of a better name I use the term foamation to indicate those 2-functors. I conjecture the existence of similar 2-functor...
متن کاملRepresentations of Khovanov-lauda-rouquier Algebras and Combinatorics of Lyndon Words
We construct irreducible representations of affine KhovanovLauda-Rouquier algebras of arbitrary finite type. The irreducible representations arise as simple heads of appropriate induced modules, and thus our construction is similar to that of Bernstein and Zelevinsky for affine Hecke algebras of type A. The highest weights of irreducible modules are given by the so-called good words, and the hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2012
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-012-0388-1